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ENHANCING TAIL PERFORMANCE IN EXTREME CLAS-
SIFIERS BY LABEL VARIANCE REDUCTION

ABSTRACT

Extreme Classification (XC) architectures, which utilize a massive one-vs-all clas-
sifier layer at the output, have demonstrated remarkable performance on problems
with large label sets. Nonetheless, these have also been observed to falter on tail
labels with few representative samples. This phenomenon has been attributed to
factors such as classifier over-fitting and missing label bias, and solutions involv-
ing regularization and loss re-calibration have been developed.

This paper explores the impact of label variance, a previously unexamined factor,
on the tail performance in extreme classifiers. This paper presents a method to
systematically reduce label variance in XC by effectively utilizing the capabilities
of an additional, tail-robust teacher model.

Comprehensive experiments are conducted on a diverse set of XC datasets which
demonstrate that LEVER can enhance tail performance by around 5% and 6%
points in PSP and Coverage metrics respectively when integrated with leading
extreme classifiers. Moreover, when added to the top-performing Renée classifier,
it establishes a new state-of-the-art. Extensive ablations and analysis substantiate
the efficacy of our design choices. Code and datasets will be released for research
purposes.

1 INTRODUCTION

Extreme Classification (XC) addresses tasks where a data point needs to be mapped to the subset
of its relevant labels from a large label space. Deep architectures, that comprise a neural network
encoder followed by a massive one-vs-all classification layer at the output, have become the de-
facto standard for contemporary XC algorithms and have demonstrated remarkable results on several
large-scale applications (Agrawal et al., [2013; |Yadav et al., [2021; |Chang et al., 2020} |Beygelzimer
et al.|[2009) . Nonetheless, such over-parameterized classification layers have also been observed to
under-perform on labels with limited representative samples (Wei et al., 2021). As a result, such tail
labels, which constitute a majority of the label space and provide niche and informative results in
user-facing applications (Jain et al.| | 2016), are inaccurately classified, thus diminishing their utility.

The challenge of enhancing the performance of extreme classifiers on tail labels has been the focus
of some recent studies. These investigations have identified multiple factors contributing to the hard-
ness of tail labels and proposed solutions for alleviating them. One key idea has been to constrain
the capacity of tail classifiers thereby mitigating the chances of over-fitting (Dahiya et al., 2021b).
A separate line of work has dealt with the effects of false negatives, commonly known as missing
labels, on tail performance and proposed simple loss re-calibration-based solutions (Qaraei et al.,
2021).

This paper brings to light an additional, yet previously unexamined factor that leads to a decline in
tail performance: label variance. In extreme classification, label variance refers to the inaccuracies
introduced in the ground truth when a complex distribution of label relevance is approximated with
discrete subsets of labels for each data point. For example, in the recommendation task of associ-
ating users with items they prefer, feedback in the form of user clicks is subject to variability as a
user’s interests can fluctuate over time. Consequently, click-based ground truth collected within a
finite timeframe may not be entirely accurate. Label variance can also occur in datasets with expert
annotation due to differences in relevance judgment among experts. Furthermore, the approximation
of large-scale data tasks through a finite training sample set, necessitated by cost considerations, can
introduce additional label variance. The presence of label variance results in an imprecise ground
truth in the constructed dataset, thereby compromising the quality of the trained models. Tail labels,
by their very definition of being infrequently sampled, are particularly vulnerable to this problem.
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It’s important to note that label variance is different from missing labels as it does not introduce any
systematic biases in the ground truth.

This paper presents a solution to address label variance by utilizing the model distillation framework,
as inspired by recent research (Menon et al., 2021)). In scenarios where two probabilistic models
with varying generalization capabilities exist, the more accurate model (the “teacher”) can provide
reliable relevance targets to enhance the performance of the less accurate one. This work extends
the framework from (Menon et al., [2021) to extreme classification tasks using one-vs-all classi-
fiers, providing a robust theoretical foundation. It introduces LEVER, a novel framework based on
knowledge distillation, that significantly improves tail classifier generalization with formal bounds.
Furthermore, it presents an effective instantiation of this framework using a specialized Siamese
teacher model, which has been shown to provide reliable relevance targets and yield significant
gains on tail labels.

Comprehensive experiments are conducted on a diverse set of XC datasets which demonstrate that
LEVER can enhance tail performance by around 5% and 6% points in PSP and Coverage metrics
respectively when integrated with leading extreme classifiers. Moreover, when added to the top-
performing Renee classifier, it establishes a new state-of-the-art. Extensive ablations and analysis
substantiate the efficacy of our design choices.

This paper makes the following key contributions: (1) A principled LEVER framework to mitigate
the label variance effects on tail classifiers in XC; (2) An effective and well-calibrated Siamese-
style model as a teacher with LEVER; (3) Extensive experimentation using multiple state-of-the-art
approaches and diverse benchmarks that effectively demonstrate the utility and generality of the
proposed approach; (4) Additionally, two new datasets are proposed which resemble real-world
applications like query-keyword matching and query-autocompletion tasks.

2 RELATED WORK

2.1 EXTREME CLASSIFICATION

Recent advancements (Dahiya et al.}2021b}; |Chang et al.| 2020; Kharbanda et al.}[2022) in XC have
leveraged deep network-based representations like LSTM (You et al., [2018)), Transformer (Zhang
et al., 2021} Jiang et al., 2021)) or customized architectures (Dahiya et al.,[2021b) to generate rich
semantic representations of inputs. These are then assigned to appropriate labels via an OvA clas-
sifier layer. To facilitate efficient learning with large label sets, techniques such as multi-staged
encoder refinement (Dahiya et al.l [2021b; [Zhang et al [2021}; Jiang et al.l [2021)), hierarchical label
search, and hard-negative sampling (Dahiya et al., |2022; 2021b} |[Zhang et al., 2021} Jiang et al.,
20215 Mittal et al., [2021a)) have been introduced. Furthermore, simultaneous training of the deep
encoder and OVA classifiers has been demonstrated to boost performance in leading XC approaches
like ELIAS (Gupta et al.l [2022)), CascadeXML (Kharbanda et al., 2022) and Renée (Jain et al.,
2023)). However, despite these advancements, many of these approaches share a common limitation:
a decline in performance for tail labels, which is the primary focus of this paper.

2.2 ENHANCING TAIL PERFORMANCE IN XC

Extreme Classifiers have been observed to under-perform on tail labels with limited representative
samples. This phenomenon has been attributed to various factors, and several approaches have been
proposed to address them.

Over-fitting of OvA Classifiers: OvA classifiers, which employ a distinct classifier for each label,
are massively parameterized in scenarios with large label sets. Consequently, they are susceptible
to overfitting on tail labels with scarce representative samples. To counteract this, various classifier
regularization techniques have been introduced. For instance, ProXML (Babbar & Scholkopf} 2019)
employs an L1-regularizer, and GLaS (Guo et al.| |2019) uses a label-correlation based regularizer.

Bias due to Missing Labels: In Extreme Classification (XC) datasets, which are often too large
for exhaustive labeling, missing or false negative labels are a frequent issue. These missing labels
introduce systematic biases into the ground truth and are known to significantly impact tail labels.
Strategies to address tail labels typically involve estimating the missing propensities for labels first
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and then recalibrating the loss through simple weighting (Jain et al, 20165 |Wei et al} [2021; [Wyd-
much et al.,[2021)). The phenomenon of missing label bias, while distinct, bears a close relationship
to the issue of label variance.

Data Scarcity in Tail Labels: XC datasets frequently contain tail labels with a limited number of
positive data samples. To mitigate this data scarcity, data augmentation techniques like TAUG (Wei
et al.Ll 2021) and Gandalf (Kharbanda et al.| [2023)) have been introduced. However, these methods
lack formal guarantees and are seen to not perform consistently well across different datasets in this
paper. Another line of work has exploited label-side features to improve the tail performance (Xiong
et al., [2020; |Dahiya et al., [2021a} 2022; Jain et al.| [2023)). Approaches such as NGAME (Dahiya
et al |2022) and Renée (Jain et al.,|2023) leverage label correlations via a Siamese encoder, which
semantically aligns similar labels in an embedding space, thereby facilitating information sharing
among tail labels. However, these methods primarily focus on enhancing encoder robustness and do
not explicitly address the quality of subsequent OvA classifiers. Our proposed model shares similar-
ities with these approaches through its use of a Siamese teacher but distinguishes itself by learning
a specialized teacher model suitable for distillation and focusing on improving OvA classifiers in a
principled way.

In addition to these known issues, this paper introduces label variance as an additional, but important,
consideration pertaining to tail performance in XC.

3 LEVER: LABEL VARIANCE REDUCTION IN EXTREME CLASSIFICATION

Label variance refers to the imprecision in the ground truth obtained through sampling, which is pri-
marily due to approximation errors. These errors can negatively impact the performance of trained
classifiers, particularly those on the tail. This section introduces LEVER, a principled framework
based on knowledge distillation, designed to alleviate label variance and enhance the generalization
capabilities of One-vs-All (OvA) classifiers. A practical and effective teacher model, based on a
Siamese-style encoder, is also proposed.

3.1 PRELIMINARIES

An Extreme Classification (XC) task deals with a data point space X', which is to be mapped onto a
label space, represented as ) = {0, 1}~. Here, L signifies the number of labels, potentially reaching
into the millions. The architecture of a deep extreme classification typically includes a deep encoder,
£, which generates a semantically rich representation, £(X), for any given input data point X € X'.
This process is succeeded by an extensive one-vs-all classifier layer {w;}~ ,. This layer assigns
labels based on scores derived from wlTE (X)), which are then sorted, and the highest scoring ones
are selected as the relevant labels.

The model can be trained using various strategies, such as stagewise training, which trains the en-
coder and classifiers in separate stages, and end-to-end training, which trains both concurrently.
This paper focuses on improving one-vs-all classifiers, so we adopt the stagewise approach where
the encoder is fixed. Consequently, each label’s classifier can be trained independently, simplifying
theoretical analysis. Hereafter, the space of encoder embeddings, x € £(X) C R¥ is referred to as
our data point space.

For a data point x, let Y'(x) € {0, 1} represent the set of relevant labels. In XC tasks, relevance
is typically stochastic due to inherent variabilities in a user’s preferences or annotators’ judgments.
Therefore, it is more appropriate to express relevance through a conditional probability distribution
P(Y (x) = y|x)Vy € {0, 1}. Note that this distribution sums up to 1 over all label subsets.

However, the full relevance distribution is seldom available as well as computationally expensive
for model training. Consequently, it is a common practice to approximate the relevance distribution
using a discrete sample of label subset y ~ P(Y (x) = y|x). However, the sample might not be an
accurate approximation of the whole distribution, and this imprecision is captured through variance
in label relevance:
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Vly] = Ey|x[y — Ely])?
Viy) = Ey, x [y — El]]” = P(y = 1x)(1 = P(y; = 1|x)) ¢))

The second expression signifies the variance in the marginal relevance of a label [ to point x, a term
that is particularly useful in the analysis of one-vs-all classifiers. A larger variance indicates that a
label set sampled randomly is considerably more imprecise.

To train a model, we initially construct a training set denoted as D = {x;,y;}~ ,, where x; ~
E(X),y: ~ P(Y(x;) = yi|x:). Subsequently, an independent linear classifier is trained for each
label [ by solving a binary classification problem, using y;; as the target label for the ith data point.
For clarity, we present the analysis for a single classifier, with the understanding that the same
process applies to all classifiers. To avoid confusion, we omit the subscript [ where it is not necessary.

A binary classification task involves minimizing the empirical risk of classification:

N
= min— Z (yi, W' ;) 2
with, L(y,w'x) = Cyf(l,w x) + (1 —4)f(0,w'x) 3)

Here, f represents a convex classification surrogate such as hinge loss or logistic loss (Qaraei et al.,
2021). Using a weight factor C' > 1 is standard practice in class-imbalanced classification and
mitigates the training bias in tail labels. For later use, we characterize such tail labels, with few
positives as follows, where S is a pre-defined threshold.

Ex[p:] < S < 1 “)
where, p, = P(y = 1|x) ®)

In line with the standard practice (Kakade et al., 2008)), we make certain assumptions. We assume
that the norms of the weight vector w and the input vector x are bounded such that ||w|| < W and
||x]] < X respectively. Additionally, we presume that the function f exhibits Lipschitz continuity
with a Lipschitz constant L.

The generalization performance of a trained classifier w* is evaluated by its true population risk. A
lower value of this risk indicates superior predictive capability:

R = Ey[L(yx, Ww* %)) (6)

3.2 LEVER FRAMEWORK

The deviation between the empirical and true risks is a formal expression of a classifier’s general-
ization performance. In our study, which focuses on data-dependent bounds based on variances, we
adopt the approach outlined in (Maurer & Pontil,[2009). Applying Bennett’s inequality, as suggested
in the reference, with simplifications relevant for the problem at hand, provides us the following re-
sult:

Theorem 1. Let My be the uniform covering number (Menon et all [2021)) corresponding to the
classification loss L. Then, given the definitions established earlier, For any § € (0, 1), with proba-
bility at least 1 — & over sampling the data points {x}¥ ,,

R<R+ o(\/vxﬁ(px, wTx) + (C + (LW X)?2 - B[V, [ylx]]\/log(Muy /6) /N + log(Mn /3)/N )
(7)

where, Vi L(p,, W' x),V,[y|x] are the variances in the loss function contributed by x, and condi-
tional variance of y respectively.
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Proof is provided in the supplementary Section [A]

Theorem [T|establishes a direct correlation between the generalization performance of a classifier and
the variance in labels V,, [y|x]. This implies that reducing this variance can enhance the effectiveness
of the trained classifiers. Notably, if we have precise estimates of marginal relevance, denoted by
pr = Ely|x], we can replace y with p,, effectively reducing the variance term to 0 and thereby
improving classifier generalization. This principle forms the foundation for the LEVER framework,
which employs an additional teacher network to provide accurate estimates of p,,.

The label variance term in (7)) can be further bounded, by using (@), as follows:
(C+1)(LWX)-E[V,[ylx] < (C+1)(LWX)*-Elp,] < (C+ DSELWX)® (@)

The terms (C' + 1) and S are dependent on the label skew and inversely correlated with each other.
The positive-negative balancing constant C' depends on design choices. In the special case where
there is complete balance, i.e., C = %, it is observed that the impact of label variance is confined
within (1—25)(LW X )?2. This indicates that labels in the tail, characterized by a smaller S, are more
susceptible to variance effects compared to more prevalent labels. Therefore, it becomes evident that

reducing label variance is crucial for enhancing the performance of tail classifiers.

3.3 A SIAMESE-STYLE TEACHER FOR LEVER

Recent studies have shown that Siamese Networks, when used as input encoders, exhibit impressive
performance on tail labels (Dahiya et al.| [2021aj 2022; [Jain et al., 2023). This success can be
attributed to the ability of Siamese encoders to learn correlations by utilizing label-side features.
These features, often presented as descriptive text or structured graphs over labels, are commonly
found in Extreme Classification (XC) applications. In fact, most recent XC datasets have started
to incorporate them (Bhatia et al., 2016)). Consequently, this allows for the sharing of information
between semantically similar labels, effectively addressing the problem of data scarcity in tail labels.
It’s important to note, however, that a standalone Siamese model is insufficient as it tends to under-
fit data-rich head labels, thereby compromising overall prediction quality. This paper, therefore,
proposes the use of Siamese Networks as teachers within the LEVER framework to enhance the tail
performance of one-vs-all classifiers. By employing LEVER, we can improve the tail performance
of one-vs-all classifiers without compromising their already excellent head accuracies.

A Siamese encoder is trained to map the features of data points, denoted as {x;}}¥ , and label
features, represented as {zl}le, into a common embedding space. The objective of this mapping
is to ensure that labels relevant to a given data point are positioned closer in the embedding space,
while those that are irrelevant are distanced. This is achieved by minimizing a triplet loss [z, x; —
lexi + A] 4, where k and [ are a negative and a positive label, respectively, for x; and A is a margin
enforced for better generalization (Dahiya et al.,|2021a;2022). The triplet loss is applied between all
pairs of positive-negative labels for a given point. However, the triplet-loss is not probabilistically
calibrated and does not provide reliable relevance targets for training a student.

To address this, we leverage a logistic-loss based objective that is found to be well-calibrated:

min > Y log(1 + e Xemw X 9)

Siamese
network €L ke X _
1€EX ¢

The following Theorem demonstrates the calibration property of (9) assuming that the loss can be
fully minimized, and therefore loss between each positive-negative pair is minimized.

Theorem 2. Given a label z, and a pair of data points X, Xp. Let p,, pp be the probabilities that the
label is relevant to points a,b respectively. Then, assuming that (9) is fully minimized, the expected
loss in (@) is minimized for p, = 1/(1 + e=(mzxate) p — 1/(1+ e~ (mz " x+0)

Proof is provided in supplementary Section

The above result shows a direct connection between the Siamese model’s scores and relevance prob-
abilities which can be exploited as teacher targets. Values m,c can be treated as model hyper-
parameters and fitted by cross-validating.
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4 CONTRIBUTED DATASETS

Motivation Performance evaluation of XML algorithms has largely relied on public benchmark
datasets available from (Bhatia et al.,[2016). In most of these datasets, the intent of a relevant label is
largely available from its document’s text. We refer to these as single-intent datasets. For example, in
LF-AmazonTitles-131K, the product “clothing for men” might be associated with “formal shirts for
men” or “casual shirts for men”. In contrast, several real-world XML applications belong to a multi-
intent setting where the label of a data point is often associated with diverse categories. For instance,
in query auto-completion (Yadav et al., |2021)) where a user’s partial query needs to be completed,
the query prefix and suffix only contain partial user intent, e.g. a prefix “face” could map to “book”
or “wash”. Such multi-intent datasets can be challenging for XML but are under-represented among
existing benchmarks. To bridge this gap, this paper contributes two new multi-intent benchmarks.

Contributed datasets: Two new datasets, LF-AOL-270K and LF-WikiHierarchy-1M are curated.
LF-AOL-270K involves the query auto-completion task of matching a query prefix with completing
suffixes. It is curated from public AOL search logs (Pass et al., [2006). LF-WikiHierarchy-1M
involves the taxonomy completion task Benaouicha et al|(2016) of matching a Wikipedia category
to its parent categories (Zesch & Gurevych, [2007). As the parent typically generalizes the child
category’s intent, this aligns closely with the real-world application of query-to-keyword matching.
Source data is processed by following steps provided in (Bhatia et al., [2016). Complete dataset
creation details and dataset statistics are provided in[B.2]

5 EXPERIMENTS AND RESULTS

Datasets: LEVER was evaluated on a diverse set of datasets, encompassing both full-text and
short-text collections, as well as novel multi-intent datasets. Specifically, we utilized three
full-text datasets (LF-Amazon-131K, LF-Wikipedia-500K, LF-WikiSeeAlso-320K), two short-text
datasets (LF-AmazonTitles-131K, LF-AmazonTitles-1.3M), and two new multi-intent datasets (LF-
WikiHierarchy-1M and LF-AOL-270K). For detailed dataset statistics, please refer to Table [3] in
the supplementary material. Additionally, LEVER was evaluated on a large proprietary query-to-
keyword matching dataset (QK-20M) with 20M labels.

Evaluation Metrics To assess the performance of all XC methods, standard evaluation metrics were
used, namely precision@k (P@k, k= 1, 3, and 5) and its propensity-weighted variant PSP@k (with
k=1, 3, and 5). Detailed definitions for these metrics can be found in (Bhatia et al., 2016)). Addi-
tionally, following the recommendations in (Schultheis et al., 2022)), we also include coverage @k
(C@k) as an important metric to evaluate tail label performance.

Baselines We apply LEVER to multiple strong OvA-based baselines, including Cas-
cadeXML (Kharbanda et al., 2022), ELIAS (Gupta et all [2022), and Renée (Jain et al.| |2023),
demonstrating its effectiveness. Furthermore, we conducted comparative evaluations with various
tail-specialized techniques that can be seamlessly integrated with OvA classifiers without neces-
sitating architectural modifications. This comparison included other regularization-based methods
such as GLaS (Guo et al.,[2019) and L2-regularization, as well as recent data augmentation methods
like TAUG (Wei et al.}2021) and Gandalf (Kharbanda et al.,[2023)). We also illustrated the capabil-
ity of LEVER to improve tail performance when coupled with propensity weighting methods like
Re-rank (Wei et al., [2021)). For comprehensive details on model hyper-parameters, please refer to
Section[Din the supplementary material.

LEVER Implementation Details As discussed in Section[3] LEVER incorporates label-label and
label-document correlations based on a Siamese teacher’s embeddings. Hyper-parameters for en-
coder training were taken from (Dahiya et al.|[2022)). Additionally, Siamese training was conducted
over mini-batches of labels in order to give more importance to tail labels, unlike the document
batching approach used in (Dahiya et al., [2022)), which is biased toward the head. The LEVER
augmented dataset Dy, is created by initially adding each label as a document point, resulting in a
dataset comprising /N + L documents and L labels. Encoder embeddings are then utilized to pool
label and document embeddings together. For each label [, the T nearest points from the pool are
selected and added as ground truth. Note that, this process results in additional label-label pairs and
label-document pairs, which are added into the expanded matrix either by augmenting existing pairs
in the V x L sub-matrix or by forming new pairs in the L x L sub-matrix.
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Table 1: LEVER can be applied to improve any OvA-based approach. When used with leading
OvVA approaches LEVER consistently boosts tail performance across all benchmarks, increasing
PSP on average by 5.3% while maintaining comparable precision (1.4% gain on average). Coverage
metrics (reported in Table[5]in the supplementary material) show similar trends with an average gain
of 6.5%.

Model LF-AmazonTitles-131K LF-Amazon-131K
P@l P@3 P@5 PSP@l PSP@3 PSP@5 P@l P@3 P@5 PSP@1 PSP@3 PSP@5

ELIAS 37.28 25.18 18.14 2895 3445 39.08 43.03 29.27 21.20 33.49 4080 46.76
ELIAS + LEVER 42.86 28.37 20.16 3630 41.05 4543 4738 32.24 2322 3897 46.74 52.79
CascadeXML 3596 24.77 18.15 2622 33.06 3872 4376 29.75 21.63 34.05 41.69  48.09
CascadeXML + LEVER 43.16 28.66 20.59 3586 41.65 46.86 4824 32.82 23.73 39.09 4755 54.18
Renée 46.05 30.81 22.04 3847 4487 5033 48.05 3233 2326 3932 47.10 53.51
Renée + LEVER 46.44 30.83 2192 39.70 4544 5031 49.19 3330 24.04 40.64 4848  54.87
LF-Wikipedia-500K LF-AmazonTitles-1.3M

P@l P@3 P@5 PSP@l PSP@3 PSP@5 P@l P@3 P@5 PSP@l PSP@3 PSP@5

ELIAS 81.94 62.71 4875 3358 4392 48.67 4748 4221 38.60 1879 2320  26.06
ELIAS + LEVER 82.44 63.88 50.03 36.94 49.28 55.03 4891 43.17 39.28 23.68 2743 29.72
CascadeXML 77.00 5830 45.10 3125 3935 4329 47.14 4143 3773 1592 2023  23.16
CascadeXML + LEVER 80.10 60.41 46.44 36.79 46.65 50.99 4798 42.02 38.12 20.06 24.51 27.28
Renée 8495 66.25 51.68 37.10 5027 5568 56.10 49.91 4532 2856 3338  36.14
Renée + LEVER 85.02 66.42 52.05 4250 54.86 60.20 56.01 49.43 4485 3355 36.82 38.81
LF-AOL-270K LF-WikiHierarchy-1M

P@l P@3 P@5 PSP@l PSP@3 PSP@5 P@l P@3 P@5 PSP@]l PSP@3 PSP@5

ELIAS 40.83 2233 1491 1329 2146 2522 9527 9425 9245 17.15 2441 30.01
ELIAS + LEVER 4891 43.17 39.28 23.68 2743  29.72 94.02 9197 89.50 2827 36.80 42.13
CascadeXML 41.20 22.12 1482 1258 1953 23.19 94.88 93.69 91.79 1603 22.87 28.17
CascadeXML + LEVER 3941 21.78 1499 1196 21.30 27.59 9477 93.54 91.56 20.14 2749 33.01
Renée 4097 2334 1585 15.06 2636 3197 9501 9399 9224 19.69 2736 33.20
Renée + LEVER 41.70 24.76 17.07 20.38 37.07 4513 9519 9390 92.07 24.79 32.74  38.29

Performance on SOTA OvA methods Table|l|demonstrates LEVER’s effectiveness when applied
to leading classifier-based XC methods, including CascadeXML, ELIAS, and Renée, along with
their LEVER-based counterparts. LEVER consistently improves P@1 and PSP@1 on average by
2% and 5%, respectively, across all models and datasets. When applied to Renée, LEVER achieves
new state-of-the-art performance, increasing PSP@1 by up to 5% while maintaining comparable
precision. Notably, LEVER proves highly effective on smaller datasets (LF-AmazonTitles-131K,
LF-Amazon-131K), highlighting its importance when training data is limited. Table [I3]in Supple-
mentary further illustrates LEVER’s performance gains on a proprietary dataset containing 20M
labels. Larger improvements in ELIAS and CascadeXML are attributed to these models not ex-
plicitly utilizing label features during training or initialization. In contrast, Renée, which uses the
NGAME encoder for initialization, shows comparatively modest gains with LEVER. Moreover,
Table [ in the supplementary illustrates the performance of LEVER when combined with XReg
(Prabhu et al., [2020), an extension of Parabel, showcasing that LEVER can effectively combine
with non-DNN-based methods.

Comparison with Tail Extreme Classification Methods: In Table 2| we present a comparative
analysis of Renée+LEVER against leading tail label-specialized methods. Note that these ap-
proaches can be easily integrated with OvA classifiers without any architectural modifications.
These methods can be broadly categorized into two classes: (1) regularization-based techniques,
such as GLaS (Guo et al.||2019) and L2-regularization. GLaS promotes the proximity of classifiers
for labels with similar ground truth, while L2-regularization introduces an additional L2 loss be-
tween tail expert label embeddings and label classifiers. (2) Augmentation-based methods, such as
TAUG (Wei et al.| 2021) and Gandalf (Kharbanda et al., 2023)), which introduce additional training
data for labels. Detailed comparisons with other prominent Extreme Classification methods, includ-
ing XR-Transformer (Zhang et al.| [2021), ELIAS (Gupta et al., |2022), CascadeXML (Kharbanda
et al., 2022), NGAME (Dahiya et al 2022), and ECLARE (Mittal et al., 2021b), are provided in
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Table 2: Comparison of LEVER with other tail specific XC approaches. LEVER outperforms
regularization and augmentation-based methods by an average of 4% in coverage and 3% in PSP.

LF-AmazonTitles-131K LF-AOL-270K
Cel Ce@e3 C@5 PSP@l PSP@3 PSP@5 C@l C@3 C@5 PSP@l PSP@3 PSP@5
Renée 31.31 53.50 61.03 3847 4487 5033 1240 29.77 36.53 15.06 2636  31.97

Renée +TAUG 29.47 51.52 58.68 36.49 4283 47.85 1246 29.26 3588 15.72 2674 3235
Renée + BoW 30.03 51.78 59.17 3696 4286 48.09 12.67 34.32 4345 1558 30.28  37.90
Renée + L2Reg  31.66 53.65 60.80 38.74 4453 4949 8.67 21.07 2627 1221 20.09 2436
Renée + GLaS 31.90 54.02 61.15 3874 4453 4949 1236 2941 36.06 14.67 26.11 36.75
Renée + Gandalf 33.17 55.36 62.22 4049 4583 5096 12.63 29.82 3631 15.10 26.64 32.17
Renée + LEVER 32.82 55.11 6194 39.70 4544 5031 1743 42.54 52.01 2038 37.07 45.14

LF-Wikipedia-500K LF-WikiHierarchy-1M

Renée 2290 50.08 61.59 4125 5257 57.04 6.62 1139 1456 19.69 2736  33.20
Renée + TAUG 19.88 44.74 56.13 3376 46.54 52.16 359 7.19 994 1695 2406 29.69
Renée + BoW 2292 49.64 61.40 36.66 49.79 5555 7.84 14.77 1839 2425 31.10 36.30
Renée + L2Reg  26.52 53.95 65.14 39.55 5242 5743 555 989 1291 1844 2579 3137
Renée + GLaS 2343 52.02 6390 3727 5154 57.15 6.89 11.82 15.08 1936 2689  32.62
Renée + Gandalf 23.09 49.87 61.24 37.05 4994 5531 692 13.17 17.52 21.84 30.05 36.09
Renée + LEVER 29.46 58.53 70.29 4250 5486 60.20 9.08 16.12 20.02 24.79 3274 38.29

Table [6] within the supplementary material. Our primary focus here is on tail label performance,
hence we report PSP and coverage metrics. For a comprehensive view of all metrics, we direct the
reader to the supplementary material.

LEVER consistently outperforms the second-best method by an average margin of 4% in coverage
and 3% in PSP. Notably, on datasets characterized by significant skew and multi-intent scenarios,
LEVER exhibits substantial performance gains in comparison to approaches like GLaS and Gan-
dalf, which rely on ground truth data for modeling label correlations (please refer to Table [3]in the
supplementary material for skew statistics for all datasets). Highly skewed datasets such as LF-
WikiHierarchy-1M and LF-AOL-270K pose a significant challenge due to the scarcity of ground
truth data for tail labels. With sparse ground truth annotations for tail labels, the pool of samples
available for augmentation or regularization becomes substantially reduced. This challenge is fur-
ther compounded by the multi-intent nature of the dataset, where labels may be associated with
co-occurring labels of divergent intents. For example, in the query completion task on the AOL
dataset, the label “who wrote To Kill a Mockingbird” may co-occur with labels like “wholesale
t-shirts” or “who am I” as they share the prefix “who”. Training classifiers with such diverse tar-
gets can lead to associations between dissimilar labels, hampering classifier training. Using Bag
of Words (BoW) features from label text to model label connections alleviates the multi-intent and
skew issue to some extent as we observe Renée + BoW performs better than Renée + GLaS/Gandalf
in LF-AOL-270K and LF-WikiHierarhy-1M. However, LEVER goes further by learning semantic
associations between labels and documents through a tail-expert Siamese network, surpassing raw
text-based methods.

Comparison with Siamese Teacher: In Table 0] we evaluate LEVER against its corresponding
Siamese Teacher (label sided NGAME). LEVER utilizes the Siamese teacher to improve OvA
performance for tail labels without affecting precision@k. Note in Table[9] the numbers correspond
to NGAME encoder and not NGAME fusion, which is reported in (Dahiya et al.,[2022)) and (Bhatia
et al.,[2016).

Comparison with an ensemble of OvA classifier and tail-expert: To combine the strengths of
OvA and encoder, another option might be to consider an ensemble model that uses predictions
from the OvA model for head labels and the encoder predictions for the tail labels. Table [/| com-
pares LEVER with an ensemble of OvA (Renée) and encoder (label sidled NGAME). LEVER
outperforms the ensemble on both precision and tail metrics. A more detailed discussion of this is
provided in Section [C.3]of the supplementary.

Choice of expert encoder: LEVER utilizes a 6-layer DistilBert as an expert encoder. In Table
in the supplementary we show results for two other light-weight encoders: a 3-layer MiniLM (Wang
et al) [2020) and Astec Encoder (Dahiya et al) [2021b). We add the same number of neighbors
for each label across all experts. We observe that a superior expert encoder leads to improved
performance in both P and PSP.
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Effect of sampling strategy: As discussed in the implementation details, for LEVER, the Siamese
encoder is trained over mini-batches of labels rather than documents to give more importance to tail
labels. Table [12]in supplementary compares the results of document mini-batch training to label
mini-batch training. Label mini-batch training improves PSP on average by 1.4%.

Effect of varying 7: Figure [ in the supplementary shows the effect of varying 7 on LEVER’s
performance. Increasing 7 leads to better performance on tail labels, while it hurts the head or torso
label.

LEVER Computational Cost: Since LEVER is a training time-only modification, it leaves the
inference costs unchanged while increasing the training time by at most 2x. Table[I9in the supple-
mentary shows the training time for different models and datasets when combined with LEVER.

6 CONCLUSIONS

This paper presents a novel approach to address the challenges of tail performance in Extreme Clas-
sification (XC) by focusing on label variance, a previously unexplored factor. The proposed method,
LEVER, leverages a tail-robust teacher model to systematically reduce label variance, thereby en-
hancing the performance of one-vs-all classifiers. The paper introduces an effective instantiation
of this framework using a specialized Siamese teacher model. Experimental results on various XC
datasets demonstrate significant improvements in tail performance metrics when LEVER is inte-
grated with leading extreme classifiers and advances the state-of-the-art. This paper also released
two new benchmarking datasets.
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A THEORETICAL PROOFS

Theorem 1. Let My be the uniform covering number (Menon et al.| 2021) corresponding to the
classification loss £. Then, given the definitions established earlier, For any ¢ € (0, 1), with proba-
bility at least 1 — § over sampling the data points {x} ;,

R<R+ O(\/Vxﬁ(meTX) + (C+1)(LWX)?2 - E[V,[y|x]]\/log(Mn /) /N + log(/\/lN/5)/N)
(10)

where, Vi L (p,, w ' x),V,[y|x] are the variances in the loss function contributed by x, and condi-
tional variance of y respectively.

Proof. Applying Proposition 2. from (Menon et al.,|2021) to our setting gives the following result:

R < R+ O/ Vi £y, wTx)/Iog(M /0)/N + log( Mo /6)/N)

The following simplifications can be made from basic probabilistic calculus:

Vi [L(y, w'x)] = Vi [Ey [L(y, w T x)[x]] + Ex[Vy [L(y, w " x)|x]]
= Vx[ﬁ(pxa WTX)] + E[Vy[y‘x](cfa(la WTX) - fQ(Oa WTX))]
< V[ L(ps, w'x)] + E[V, [y|x](C + 1) (LW X)?]
Y
where the last expression is derived by utilizing the Lipschitz continuity condition over f.
O

Theorem 2. Given a label z, and a pair of data points x,, xXp. Let p,, p, be the probabilities that the
label is relevant to points a, b respectively. Then, assuming that (9) is fully minimized, the expected

loss in @) is minimized for p, = 1/(1 4 e~ (M2 Xate) p, =1 /(1 4 ¢~ (mz ' xvtc)

Proof. The expected loss between the triplet is given by:

T T T T
Pa(l —pp)log(l 4+ e* 7% Xa) 4 pp(1 — p,) log(1 + e* Xa™2 Xv) (12)
By setting the gradient of the above equation to 0, and then substituting the equations for p,, ps, the
result is readily available O

B DATASET DETAILS

B.1 DATASET STATISTICS

Table |3| shows the statistics of benchmark datasets including the newly contributed multi-intent
datasets.

B.2 MULTI-INTENT DATASET PREPARATION
B.2.1 LF-AOL-270K

Task Description: Query auto-completion involves matching a query prefix to completing suffixes,
e.g. given a prefix, ‘cheap nike s’ recommending suffix completions like ‘shoes’, ‘shirts’ etc. LF-
AOL-270K is curated from AOL search logs (Pass et al., 2006 for the task of query auto-completion
where (prefix, suffix) pairs are modeled as (doc, label) pairs. Retrieved suffixes from this task can be
combined with user prefixes to get full query completions as proposed in (Mitra & Craswell, [2015)).

12



Preprint, under review

Table 3: Dataset Statistics. Pos-80% is an imbalance metric (Schultheis et al., 2022} defined as
minimum fraction of class labels that retain 80% of all positive labels in the dataset. Lower value
corresponds to higher skew.

| Dataset | Train Docs | Test Docs | Labels | Avg. Labels/Doc | Avg. Docs/Label | Pos-80%
LF-AmazonTitles-131K | 294,805 134,835 131,073 2.29 5.15 47.5
%D LF-Amazon-131K 294,805 134,835 131,073 2.29 5.15 47.5
2 | LF-WikiSeeAlso-320K 693,082 177,515 | 312,330 2.11 4.68 374
i LF-Wikipedia-500K 1,813,391 | 783,743 | 501,070 4.77 24.75 25.1
LF-AmazonTitles-1.3M | 2,248,619 | 970,237 | 1,305,265 22.20 38.24 28.9
% | LF-AOL-270K 3,922,479 | 519,352 | 272,825 2.01 28.83 11.6
Z | LF-WikiHierarchy-1M 1,589,378 | 397,952 | 976,214 25.98 42.31 7.3

Dataset generation: The dataset generation process involved three steps (i) Pre-processing, (ii)
Prefix-suffix generation, and (iii) Post-processing

Pre-processing: Queries in AOL search logs were de-duplicated and non-alphanumeric characters
were removed. Queries with less than three characters were filtered since auto-completion is rarely
required for those. Additionally, steps prescribed in (Kim)| [2019)) were followed for pre-processing
and train-test splits creation.

Prefix-suffix generation: After pre-processing, a shortlist of the top 10M popular suffixes was
derived from the train split, based on their frequency in queries. These suffixes are popular n-grams
(word-level) up to 100 characters appearing at the end of queries. Sampling was done to ensure that
each train query has at least one suffix from 10M suffix shortlist. Ground truth suffixes were added
for sampled prefixes yielding 9.3M suffixes and 5.67M distinct prefixes (training points). Using the
10M suffix shortlist, the process of sampling prefixes was repeated in the test split, resulting in 460K
suffixes.

Post-processing: Train-test leakage was avoided by removing all prefixes in the test set that ap-
peared in the train set. The suffix (label) set is derived from the intersection of train and test suffixes
to have a fixed label set. Finally, the dataset contains 272K labels (suffixes), 3.9M training points
(prefixes), and 519K test points (test prefixes).

Code to create the dataset from raw AOL search logs (Pass et al., 2006) will be released upon
acceptance of this paper.

B.2.2 LF-WIKIHIERARCHY-1M

Task description: Taxonomy completion task involves matching a category with its generalized
parent categories. LF-WikiHierarchy-1M uses Wikipedia categories to build a taxonomy completion
task where documents are categories and labels are its parent categories. Articles in Wikipedia
are assigned categories, which serve as semantic tags. (e.g. ‘FIFA World Cup 2022’ article has
a category tag of ‘Football’). These categories are arranged in a taxonomy-like structure where
each category is linked to zero or more parent categories. The parent of a category is its direct
generalization, e.g. the category ‘Football’ has direct parent categories ‘Athletic Sports’, ‘“Team
sports’ and "Ball Games’. This taxonomy-like structure is called Wikipedia Category graph (WCG)
and has been well studied in (Zesch & Gurevych, |2007; Benaouicha et al., | 2016).

Dataset generation The dataset generation process involved four steps (i) Raw data collection, (ii)
Pre-processing, (iii) Label set generation from WCG and (iv) Post-processing.

Raw data collection: The WCG is created by using the English Wikimedia dump as of 03/23 [H The
dump contains the list of all Wikipedia categories and their links.

Pre-processing: To create the WCG we first filter out all meta categories used for Wikipedia main-
tenance, e.g. ‘Wikipedia missing topics’, “Wikipedia new articles’, ‘Categories for renaming’ etc.
The complete list of filtered meta-categories will be released as part of the code. Post filtering, the
resulting WCG is a directed acyclic graph with 1,993,526 categories (nodes) and 5,781,016 (edges).
Each edge is a document-label pair.

"https://dumps.wikimedia.org/enwiki/20230301/
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Figure 1: Snapshot of WCG graph starting from category ‘Football’. All categories (nodes) reach-
able from ‘Football’ till the depth of 3 are added to its ground truth label set.

Label set generation from WCG: The WCG in its current form only contains direct parents and
misses out on potentially important ground truth information. For example, the category ‘Foot-
ball’ will not have categories like ‘Sports’, ‘Athletic Sports’, and “Team activities’ as its labels as
they are not its direct parents. On the other hand, adding all reachable nodes as labels leads to
vague document-label pairs. For example, starting from ‘Football’ one can reach the category ‘Cos-
mopolitan mammals’ as follows: ‘Football’ — ‘Athletic sports’ — ‘Sports by type’ — ‘Sports’ —
‘Entertainment” — ‘Human activities” — ‘Humans’ — ‘Cosmopolitan mammals’.

To maximize the relevant ground truth document-label pairs while also avoiding wrong matches
like ‘Football’ — ‘Cosmopolitan mammals’ we limit the traversal to a maximum depth of 3 which
gave the optimal trade-off (i.e. maximize true positives while avoiding false positives). Thus, in
the above example, only categories up to ‘Sports’ are added as labels. Please refer to Fig. [1| for
more clarity. Subsequently, we get 1,987,330 documents and 976,214 labels with 51,643,812 edges
between them. Note that both the number of documents and labels are less than the total number of
categories (1,993,526). Some categories will not have a parent and therefore won’t be added as a
document. Similarly, categories that are not parents of any category will not be added as labels. The
final dataset is created by taking an 80%-20% random train-test split.

Post-processing: The dataset contains categories that occur as both documents and labels. For
example, the category ‘Football” occurs both as a label (for ‘Football clubs’, ‘History of Football’,
etc), and as a document. Since a category will never have itself as a label we filter off pairs like
‘Football’— ‘Football’ during evaluation so as to not unfairly penalize Siamese-based models that
rank such pairs at the top.

The processed dataset as well as the code to re-create it from Wikimedia dump will be released upon
acceptance of this paper.

C ADDITIONAL RESULTS

C.1 LEVER’S PERFORMANCE ON NON-DNN METHODS

Table E] illustrates the performance of LEVER when combined with XReg (Prabhu et al., [2020),
an extension of Parabel, showcasing that LEVER can effectively combine with non-DNN-based
methods.

Table 4: Performance Comparison of XReg and XReg + LEVER on LF-AOL-270K and LF-
AmazonTitles-131K

Dataset Model P@l P@3 P@5 PSP@I PSP@3 PSP@5 C@l C@3 C@5
. XReg 331 223 160 245 294 3354 2022 36.63 42.84
LF-AmazonTitles-131K yp o, [ EVER 380 247 17.6 314 351  39.1 2584 4347 49.68
XReg 270 143 99 70 110 141 418 10.58 1444

LF-AOL-270K XReg + LEVER 26.1 143 101 92 179 240 679 2059 28.65
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Figure 2: P@5 comparison of Siamese Encoder (blue) and OvA Classifier Renée (orange) on ho-
mogeneous (LF-AmazonTitles-131K: Fig. 2a LF-Wikipedia-500K: Fig. and heterogeneous
datasets (LF-AOL-270K: Fig. [2b] LF-WikiHierarchy-1M: Fig. [2d). Labels are partitioned into
equi-volume bins based on their frequencies along the X-axis. The difference in performance (on
both head and tail) is wider for heterogeneous datasets.

C.2 COMPARISON WITH SOTA AND TAIL XC METHODS

Table [5] demonstrates the enhanced performance achieved by applying LEVER to top-performing
Extreme Classification (XC) methods, including ELIAS, CascadeXML, and Renée. On average PSP
metrics are boosted by 5%, Coverage improves by 6.5% and Precision improves by 1.4%.

Table [6] presents a comparison of LEVER with various OvA-based methods (XR-Transformer,
ELIAS, and CascadeXML) and Siamese encoder methods (NGAME and ECLARE). It’s worth not-
ing that for WikiHierarchy-1M, OvA and Siamese approaches exhibit significant trade-offs between
precision and tail metrics.

C.3 COMPARISON WITH ENSEMBLE BETWEEN TAIL EXPERT AND OVA CLASSIFIER

In the ensemble model, for each data point, the encoder and OvA model provide a shortlist of top-k
labels along with their prediction scores. These two shortlists (containing a total of up to 2k labels)
need to be combined into a single shortlist of k labels by tie-breaking as elaborated below. First, the
labels with a frequency more than the cut-off are considered from the OvA’s shortlist. Similarly, the
labels with a frequency less than the cut-off are considered from the encoder’s shortlist. Cut-offs are
derived on the basis of the cross-over points between Encoder and Renée in the decile wise plots
shown in Fig. [2] Then, the two resulting shortlists are combined by considering the assigned label
scores from both models and retaining only the k overall highest-scoring labels. Table[7]shows that
LEVER clearly outperforms the ensemble model in 3 out of 4 datasets across all metrics. In the
case of LF-WikiHierarchy-1M, the ensemble model shows gains in coverage metrics (~4-5%), this
comes at the expense of a significant loss in Precision (~30%). Figure 3] compares the performance
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Table 5: Using LEVER with leading OvA approaches improves their tail label performance con-
sistently across benchmarks, with an average gain of 5% in PSP and 6.5% in coverage (C), while
maintaining comparable precision (P) with an average gain of 1.4%.

Model LF-AmazonTitles-131K
P@1 P@3 P@5 PSP@l PSP@3 PSP@5 C@1 C@3 C@5
ELIAS 37.28 25.18 18.14 28.95 34.45 39.08 23.73 4236 49.06
ELIAS + LEVER 42.86 28.37 20.16 36.30 41.05 4543 29.81 49.88 56.25
CascadeXML 3596 2477 18.15 26.22 33.06 38.72  21.14 4041 4838
CascadeXML + LEVER | 43.16 28.66 20.59 35.86 41.65 46.86 29.13 50.44 57.83
Renée 46.05 30.81 22.04 38.47 44.87 50.33 3131 53.50 61.03
Renée + LEVER 46.44 30.83 21.92 39.70 45.44 5031 32.82 5511 61.94
LF-Amazon-131K
ELIAS 43.03 29.27 21.20 3349 40.80 46.76  27.04 49.10 57.34
ELIAS + LEVER 47.38 32.24 2322 3897 46.74 52.79 31.47 5527 63.40
CascadeXML 43776 29.75 21.63 34.05 41.69 48.09 3094 5420 62.74
CascadeXML + LEVER | 48.24 32.82 23.73 39.09 47.55 54.18 31.26 5597 64.81
Renée 48.05 3233 2326 39.32 47.10 5351 3149 5581 64.61
Renée + LEVER 49.19 33.30 24.04 40.64 48.48 54.87 3239 56.81 65.20
LF-WikiSeeAlso-320K
ELIAS 4140 27.36 20.66 23.83 28.38 31.90 13.30 27.72 35.50
ELIAS + LEVER 45.99 30.28 22.78 30.00 34.16 37.52 16.56 33.06 41.34
CascadeXML 30.21 18.72 14.05 1246 14.15 1625 670 13.38 17.72
CascadeXML + LEVER | 38.84 2543 19.36 21.62 25.85 2945 12.01 25.12 32.59
Renée 4770 3190 23.82 31.13 36.49 40.37 17.02 3532 4456
Renée + LEVER 47.89 31.52 2353 32.44 37.45 4099 17.78 36.33 45.31
LF-Wikipedia-500K
ELIAS 81.94 62.71 4875 33.58 43.92 48.67 19.62 4130 51.36
ELIAS + LEVER 82.44 63.88 50.03 36.94 49.28 55.03 23.55 50.81 63.04
CascadeXML 77.00 5830 45.10 31.25 39.35 4329 1578 33.07 41.46
CascadeXML + LEVER | 80.10 60.41 46.44 36.79 46.65 50.99 2399 49.16 60.13
Renée 84.95 66.25 51.68 37.10 50.27 55.68 2290 50.08 61.59
Renée + LEVER 85.02 66.42 52.05 42.50 54.86 60.20 29.46 58.53 70.29
LF-AOL-270K
ELIAS 40.83 22.33 1491 13.29 21.46 2522 1046 22.85 27.06
ELIAS + LEVER 40.85 22.83 15.57 13.68 24.30 3043 10.52 26.33 33.56
CascadeXML 41.20 22.12 1482 12.58 19.53 23.19 791 22.09 29.83
CascadeXML + LEVER | 39.41 21.78 1499 11.96 21.30 2759 7.86 22.11 29.89
Renée 40.97 2334 1585 15.06 26.36 31.97 1240 29.77 36.53
Renée + LEVER 41.70 24.76 17.07 20.38 37.07 4513 1743 42.54 52.01
LF-WikiHierarchy-1M
ELIAS 95.27 9425 9245 17.15 24.41 30.01 4.00 7.78 1049
ELIAS + LEVER 94.02 91.97 89.50 28.27 36.80 42.13 10.78 18.88 23.03
CascadeXML 94.88 93.69 91.79 16.03 22.87 28.17 3.12 6.17 852
CascadeXML + LEVER | 94.77 93.54 91.56 20.14 27.49 33.01 935 16.80 21.05
Renée 95.01 9399 92.24 19.69 27.36 3320 6.62 11.39 14.56
Renée + LEVER 95.19 9390 92.07 24.79 32.74 3829 9.08 16.12 20.02
LF-AmazonTitles-1.3M
ELIAS 47.48 4221 38.60 18.79 23.20 26.06 11.53 21.45 2733
ELIAS + LEVER 48.91 43.17 39.28 23.68 27.43 29.72 1510 26.65 32.84
CascadeXML 47.14 4143 3773 1592 20.23 23.16 8.65 1675 21.95
CascadeXML + LEVER | 47.98 42.02 38.12 20.06 24.51 27.28 1236 22.57 28.52
Renée 56.10 49.91 45.32 28.56 33.38 36.14 17.61 30.60 37.59
Renée + LEVER 56.01 49.43 4485 33.55 36.82 38.81 21.03 3570 42.78

of LEVER with the ensemble model and here we see a clear dip in the torso deciles. To better
understand why the ensemble curve doesn’t exactly mimic the OvA curve before the cutoff and
encoder curve after the cutoff, consider the following toy example:

Assume a dataset D with 8 labels which are partitioned into 3 deciles (head, torso, and tail deciles).
Out of 8 labels, 3 belong to the head decile (Hy, Ho, H3), 2 belong to the torso decile (01, O2)
and the remaining 3 belong to the tail decile (1%,7%,73). The cut-off threshold partitions the
label set into 2 sets: (i) labels with frequency greater than cut-off: (H;, Hs, H3, O2) and labels
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Table 6: Comparison between LEVER and leading OvA-based methods such as XR-Transformer,
ELIAS, and CascadeXML, as well as Siamese encoder-based methods like NGAME and ECLARE.
Note that for LF-WikiHierarchy-1M, OvA and Siamese-based methods display significant trade-offs
between precision and tail metrics. Siamese-based methods score much higher in PSP numbers (+16
on average) but lag behind in precision (-14 on average) when compared to OvA-based methods.

P@l [ P@3 [ P@5 [PSP@I [ PSP@3 [ PSP@5 | C@l | C@3 | C@s
LF-AmazonTitles-131K
XR-Transformer | 38.10[25.57 [ 18.32] 28.86 | 34.85 | 39.59 [2024[40.70]48.87

< ||ELIAS 3728 |25.18 | 18.14 | 28.95 | 3445 | 39.08 |23.73|42.36 | 49.06
4 || CascadeXML 3596 | 24.77 [ 18.15 | 2622 | 33.06 | 38.72 |21.14 | 40.41 | 48.38
%‘g ECLARE 40.74 | 27.54 | 19.88 | 33.51 | 39.55 | 4470 |20.57 | 44.45|53.89
@ = || NGAME 46.01(30.28 |21.47 | 38.81 | 44.40 | 49.43 |32.04|53.61|60.65
Renée 46.05 | 30.81 [22.04 | 3847 | 44.87 | 50.33 |31.31|53.50|61.03

Renée +TAUG 44.34129.73 | 21.15 | 3649 | 42.83 | 47.85 |29.47|51.52|58.68
Renée + BoW 42.95(29.18 [21.03 | 36.96 | 42.86 | 48.09 |30.03 |51.78 | 59.17

S 2| Renée + L2Reg | 45.19[29.92 |21.29 | 38.74 | 4453 | 49.49 |31.66 | 53.65 | 60.80
_ 2||Renée+GLaS | 4535 |30.03|21.33| 38.74 | 44.53 | 49.49 |31.90|54.02 | 61.15
& = || Renée + Gandalf | 45.86 | 30.53 | 21.79 | 40.49 | 45.83 | 50.96 |33.17 | 55.36 | 62.22
Renée + LEVER | 46.44 | 30.83 [ 21.92 | 39.70 | 4544 | 5031 |32.8255.11|61.94
LF-AOL-270K

XR-Transformer | 37.56 2044 [13.94[ 11.76 | 21.10 | 26.31 | 8.83 [23.07]29.44

< ||ELIAS 40.83(22.33 | 14.91 | 1329 | 2146 | 2522 |10.46|22.85|27.06
4 || CascadeXML 4120 (22,12 | 14.82 | 12,58 | 1953 | 23.19 | 7.91 |22.09|29.83
%’:g ECLARE 2853 [ 16.18 | 11.55| 10.11 | 18.69 | 24.58 | 7.41 |20.59 | 28.11
& = || NGAME 944 (2293|1530 1637 | 29.12 | 3629 |14.2834.70 | 43.84
Renée 40.97 2334 1585 | 15.06 | 2636 | 31.97 |12.40|29.77 | 36.53

Renée +TAUG 40.40 | 22.80 | 15.56 | 15.72 | 26.74 | 32.35 |12.46 |29.26 | 35.88
Renée + BoW 41.11 2391 1641 | 1558 | 30.28 | 37.90 |12.67 | 34.32 | 43.45

(>')< % || Renée + L2Reg | 39.83 | 21.75 | 14.71 | 1221 | 20.09 | 24.36 | 8.67 |21.07 | 26.27
_ g Renée + GLaS 4091|2325 | 15.78 | 14.67 | 26.11 | 31.75 | 12.36|29.41 | 36.06
E ﬁ Renée + Gandalf | 40.63 | 23.01 | 15.58 | 15.10 | 26.64 | 32.17 |12.63 |29.82 | 36.31

Renée + LEVER | 41.71 | 24.77 | 17.07 | 20.38 | 37.07 | 45.14 |17.43 | 42.54 | 52.01
LF-Wikipedia-500K
XR-Transformer | 81.62 | 61.38 | 47.85 | 33.58 | 4297 | 47.81 |[19.05 |40.05|50.66

% ELIAS 81.94 | 62.71 | 48.75 | 33.58 | 43.92 | 48.67 |19.62|41.30|51.36

—é CascadeXML 77.00 | 58.3 |45.10| 31.25 | 39.35 | 43.29 |15.78 | 33.07 | 41.46
% f_j NGAME 84.01 | 64.69 | 49.97 | 41.25 | 52.57 | 57.04 |26.22|51.42|64.79
& =|| Renée 84.9566.25 | 51.68 | 41.25 | 52.57 | 57.04 |22.90 |50.08 | 61.59

Renée +TAUG 83.07 | 64.46 | 50.32 | 33.76 | 46.54 | 52.16 |19.88 |44.74|56.13
Renée + BoW 84.43 1 66.09 | 51.74 | 36.66 | 49.79 | 55.55 |[22.92|49.64|61.40

S 2 || Renée + L2Reg | 84.57 | 66.05 | 51.50 | 39.55 | 5242 | 57.43 |26.52|53.95|65.14
_ é Renée + GLaS 84.85 | 66.63 | 52.09 | 37.27 | 51.54 | 57.15 |23.43|52.02|63.90
& § Renée + Gandalf | 84.59 | 66.07 | 51.63 | 37.05 | 49.94 | 5531 |23.09 |49.87|61.24
Renée + LEVER | 85.02 | 66.42 | 52.05 | 42.50 | 54.86 | 60.20 | 29.46 | 58.53 | 70.29
LF-WikiHierarchy-1M

XR-Transformer | 95.33 | 94.48 | 92.66 | 1596 | 21.13 | 28.76 | 2.98 | 6.23 | 8.86

% ELIAS 95.27 | 94.25|92.45| 17.15 | 2441 | 30.01 | 4.00 | 7.78 | 10.49
-é CascadeXML 94.88 193.69 |91.79 | 16.03 | 22.87 | 28.17 | 3.12 | 6.17 | 8.52

g < || ECLARE 91.24 |1 89.60 | 87.39 | 15.46 | 2231 | 27.24 | 249 | 5.82 | 9.17
& 2 || NGAME 83.16 | 78.24 | 73.90 | 38.43 | 44.22 | 47.93 | 7.83 |22.59|29.25
Renée 95.0193.99 192.24 | 19.69 | 2736 | 33.20 | 6.62 | 11.39| 14.56

Renée +TAUG 95.34 | 94.45 19227 | 1695 | 24.06 | 29.69 | 3.59 | 7.19 | 9.94

Renée + BoW 93.92192.04 |90.27 | 24.25 | 31.10 | 36.30 | 7.84 | 14.77| 18.39

S 2 || Renée + L2Reg | 94.36 | 93.22 | 91.34 | 18.44 | 2579 | 31.37 | 5.55 | 9.89 | 1291
_ é Renée + GLaS 95.0193.98 192.26 | 20.07 | 27.82 | 33.70 | 6.89 | 11.82| 15.08
& ﬁ Renée + Gandalf | 93.01 | 90.85 | 88.16 | 21.84 | 30.05 | 36.09 | 6.92 |13.17|17.52

Renée + LEVER | 95.19 | 93.90 | 92.07 | 24.79 | 32.74 | 38.29 | 9.08 |16.12 | 20.02

with frequency less than cut-off: (O1,77,7T5,T3). Assume a data point d has ground truth labels:
(Hy, Ha,01,02,T1).

Below we list the predictions of different models in the format of “label ID:model score”

Top-5 encoder predictions (77 : 0.8,75 : 0.6,75 : 0.4,0; : 0.2,05 : 0.1).
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Table 7: Comparison of LEVER with an ensemble of OvA and tail expert encoder. LEVER
outperforms the ensemble consistently on all metrics for 3 out of 4 datasets . Note that for LF-
WikiHierarchy-1M even though the ensemble improves coverage, the drop in precision is very large
(31% on average).

P@l P@3 P@5 PSP@l PSP@3 PSP@5 C@1 C@3 C@5
LF-AmazonTitles-131K

Ensemble 4298 26.84 1823 3724 4158 44.69 3038 51.57 57.54

Renée + LEVER 46.44 30.83 21.92 39.70 4544 50.31 32.82 55.11 61.94
LF-AOL-270K

Ensemble 3520 2033 13.69 19.43 3698 4474 17.19 44.80 54.87

Renée + LEVER 41.71 24.77 17.07 20.38 37.07 45.14 1743 42.54 52.01
LF-Wikipedia-500K

Ensemble 82.55 61.96 46.65 39.82 5129 5576 25.72 58.46 7217
Renée + LEVER 85.02 66.42 52.05 4250 5486 60.20 29.46 58.53 70.29

LF-WikiHierarchy-1M

Ensemble 6748 62.65 5839 28.08 31.75 3401 10.86 20.82 25.89
Renée + LEVER 95.19 93.90 92.07 2479 3274 3829 9.08 16.12 20.02

Top-5 OVA predictions (H; : 0.7, Hy : 0.5, H3 : 0.3,02 : 0.2,01 : 0.1)

To compute the ensemble model predictions, we first restrict the predictions of the individual models
based on the cutoff frequency, i.e Encoder’s predictions are restricted to (O1, 11,75, T3) and OvA
predictions are restricted to (H1, Ha, Hs, O2). This gives the following filtered shortlists:

Encoder: (T3 : 0.8, 75 : 0.6,75 : 0.4,04 : 0.2)

OvA: (H;:0.7,H2 : 0.5,H3 :0.3,02 : 0.2)

Next, we combine and sort the labels based on the scores from both the encoder and OvVA as follows:
(11 :0.8,H, : 07,75 : 0.6, H3 : 0.5,73 : 0.4, H3 : 0.3,02 : 0.2,01 : 0.2)

Finally, we retain only the top-5 highest scoring labels as our final ensemble predictions:

Ensemble predictions: (17 : 0.8, Hy : 0.7,T% : 0.6, Hy : 0.5, T5 : 0.4) Table [8| shows the contri-
bution to P@5 for different models across the three deciles. Note that the example is in line with
our observations in Fig. [3 where (i) Encoder performs better on tail deciles (blue curve), (i) OvA
models perform better on head deciles (orange), (iii) Ensemble (green) between Encoder and OvA
models perform comparably to Encoders on tail deciles and OvA based models on head deciles but
incurs significant losses in torso deciles, (iv) Performance of the ensemble model can be worse than
the individual models (e.g. ensemble P@5 < OvA P@5 in toy example). If the Ensemble model
were to dominate both Encoder and OvA models it should have achieved decile-wise contributions
of (2/5,2/5,1/5) which is not the case. On average, the torso labels are ranked relatively lower by
both models since neither model specializes in them. Further, when combined using the proposed
ensemble these labels get more aggressively down-voted.

Table 8: P@5 performance for different models across deciles.

Model Head Decile P@5 Torso Decile P@5 Tail Decile P@5  Overall P@5

Encoder 0/5 2/5 1/5 3/5
OvA 2/5 2/5 0/5 4/5
Ensemble 2/5 0/5 1/5 3/5

C.4 COMPARISON WITH NGAME ENCODER
C.5 EFFECT OF RE-RANKING ON LEVER AND OTHER TAIL XC APPROACHES
Table [10] illustrates the impact of post-hoc reranking using inverse propensity scores, on LEVER

and other Tail XC approaches. The application of reranking shows varying degrees of trade-offs
between precision and tail metrics across different models. Notably, while LEVER attains superior
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Figure 3: Performance comparison of a Tail Expert Encoder (blue), an OvA Classifier (orange), an
Ensemble of Expert Encoder and OvA Classifier (Green) and LEVER-based OvA Classifier (red) in
the presence of label skew. Labels are partitioned into equi-volume bins based on their frequencies
along the X-axis. OvA overfits to tail labels with few training points. Encoder leverages label meta-
data to improve on tail but underfits to head. Ensemble mode suffers on torso labels. LEVER
combines the strengths of both OvA and Encoder to perform well on all labels.

Table 9: Renée (OvA) and Siamese trained NGAME encoder exhibit different trade-offs on in pre-
cision and tail-metrics (PSP, Coverage). LEVER improves the tail performance of Renée (+5% on
average in PSP and +3% on average in Coverage) while retaining comparable precision.

P@l P@3 P@5 PSP@l PSP@3 PSP@5 C@1 C@3 C@5
LF-AmazonTitles-131K
NGAME Encoder 41.33 28.71 20.77 39.24 4462 4952 32.83 55.11 61.95

Renée 46.05 30.81 22.04 3847 4487 5033 31.31 53.50 61.03

Renée + LEVER 46.44 30.83 21.92 39.70 4544 5031 32.82 55.11 61.94
LF-AOL-270K

NGAME Encoder 2324 15.67 11.68 25.41 36.24 4343 2749 4745 5558

Renée 4097 2334 1585 1506 2636 3197 1240 29.77 36.53

Renée + LEVER 41.71 24.77 17.07 2038  37.07 45.14 1743 4254 52.01
LF-Wikipedia-500K

NGAME Encoder 67.81 45.65 3431 60.76 5725 57.20 48.76 71.41 78.59
Renée 8495 66.25 51.68 37.10 50.27 55.68 2290 50.08 61.59
Renée + LEVER 85.02 6642 52.05 4250 5486 6020 29.46 5853 70.29

LF-WikiHierarchy-1M

NGAME Encoder 66.82 60.64 5542 75.63  73.02  70.54 21.82 4293 50.62
Renée 95.01 9399 9224 19.69 2736 3320 6.62 11.39 14.56
Renée + LEVER 95.19 9390 92.07 2479 3274 3829 9.08 16.12 20.02

performance in tail metrics for three out of four datasets, there is a trade-off in precision compared
to other methods in the LF-WikiHierarchy-1M dataset.

C.6 ABLATIONS

Effect of Teacher Model: Table[IT]demonstrates the impact of employing various encoders as a tail
expert. We conduct a comparison with two alternative encoders: (i) MiniLM, a 3-layer transformer
model, and (ii) Astec, which learns a projection matrix from sparse Bag of Words (BoW) features
to a dense embedding space. The results highlight that the choice of a superior teacher substantially
enhances the performance of LEVER.

Effect of sampling strategy: LEVER makes use of NGAME Module (Dahiya et al.l|2022) trained
using mini-batches of labels instead of documents. The modification helps specialize the Siamese
encoder towards tail labels. Renée + LEVER 4, denotes the model that uses NGAME encoder with
mini-batches of documents to augment the training data. Table [I2] shows the effect of sampling
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Table 10: Performance comparison of LEVER with other tail XC approaches LEVER outperforms
other tail XC methods in tail metrics on 3 out of 4 datasets. while LEVER attains superior perfor-
mance in tail metrics for three out of four datasets, there is a trade-off in precision compared to other
methods in the LF-WikiHierarchy-1M dataset.

Dataset Model P@l P@3 P@5 Ps@]l Ps@3 Ps@5 C@l C@3 C@5
Renée 46.05 30.81 22.04 3847 44.87 5033 31.31 53.50 61.03
+ Rerank 46.16 30.80 22.02 39.99 45.53 50.78 3290 54.65 61.84

LF-AmazonTitles-131K  + L2Reg + ReRank ~ 44.89 29.71 21.14 39.99 44.58 49.29 33.18 5448 61.19
+ GLaS + ReRank 45.06 29.82 21.17 40.18 44.83 49.49 3336 54.78 61.48
+ Gandalf + ReRank  44.17 30.29 21.90 4098 46.09 51.19 33.61 56.27 62.97
+LEVER +ReRank 4536 30.67 2195 41.13 46.00 50.85 3391 5579 6231

Renée 4097 2334 1585 15.06 26.36 31.97 1240 29.77 36.53
+ Rerank 4153 24.11 16.44 20.21 31.11 37.24 20.27 36.13 43.01
LF-AOL-270K +L2Reg + ReRank 4025 22.43 1525 15.16 23.59 28.81 13.69 26.38 32.56

+ GLaS + ReRank 41.41 2401 1637 19.93 30.71 36.82 20.05 35.71 42.56
+ Gandalf + ReRank  40.87 23.49 1594 20.70 30.68 36.22 20.61 3547 41.65
+LEVER + ReRank 39.60 24.23 16.92 28.20 41.58 49.33 27.40 48.95 57.62

Renée 84.95 66.25 51.68 37.10 50.27 55.68 2290 50.08 61.59
+ Rerank 79.28 63.56 50.80 53.44 56.16 59.06 41.58 59.52 67.17
LF-Wikipedia-500K +L2Reg + ReRank  79.30 63.64 50.69 57.67 58.06 60.32 45.03 6290 70.14
+ GLaS + ReRank 80.20 64.74 51.50 5322 56.85 60.07 41.49 60.17 68.55
+ Gandalf + ReRank  80.58 64.55 5129 51.03 55.09 58.36 39.07 58.00 66.23
+LEVER + ReRank 7534 62.07 50.26 59.15 60.29 62.95 47.24 68.40 75.94

Renée 95.01 93.99 9224 19.69 2736 3320 6.62 11.39 14.56
+ Rerank 89.95 89.94 88.86 44.15 52.89 58.47 18.15 30.53 35.16
LF-WikiHierarchy-IM  + L2Reg + ReRank ~ 91.18 90.92 89.51 4122 49.41 5500 16.34 27.78 32.73
+ GLaS + ReRank 93.09 92.42 91.00 46.38 5475 60.17 18.78 31.41 36.07
+ Gandalf + ReRank  86.03 83.04 80.88 51.77 57.79 61.37 20.21 34.82 39.73
+LEVER + ReRank 86.27 84.51 83.69 52.17 58.92 63.59 19.60 34.84 40.58

Table 11: Comparison of different encoders: a 3-layer MiniLM and Astec, and their effects on
LEVER performance. The Astec encoder learns a projection matrix that maps sparse Bag-of-Words
features to a dense embedding space. The table below shows that a superior expert encoder leads to
improved performance in both Precision and tail metrics, namely PSP and coverage.

P@l P@3 P@5 PSP@] PSP@3 PSP@5 C@1 C@3 C@5
LF-AmazonTitles-131K

Astec Encoder 19.78 1828 1439 1696  27.38  33.61 1434 3577 44.37
MinLM-L3 Encoder 23.86 21.65 1682 2022 3244 3926 17.20 41.80 50.82
NGAME Encoder 4133 2871 20.77 3924 4462 4952 3283 55.11 61.95
Renée 46.05 30.81 22.04 3847 4487 5033 31.31 5350 61.03
Renée + LEVER (Astec) 4276 2897 2097 36.09 4225 47.82 29.54 5129 59.01

Renée + LEVER (MiniLM-L3) 45.26 30.40 21.82 38.28 44.67 50.09 3122 53.73 61.11
Renée + LEVER (NGAME) 46.44 30.83 2192 3970 4544 5031 32.82 55.11 61.94

LF-AmazonTitles-1.3M

MinLM-L3 Encoder 36.14 3025 2632 28.12  29.00 29.29 1838 31.56 37.83
Astec Encoder 32.10 26.86 23.43 2548 2620 2648 16.81 29.32 35.46
NGAME Encoder 4227 36.16 31.63 35.62 38.11 38.87 2237 3893 46.98
Renée 56.10 4991 4532 2856 3338 36.14 17.61 30.60 37.59
Renée + LEVER (Astec) 4930 43.12 3926 3046 33.83 3586 18.39 33.10 40.71

Renée + LEVER (MiniLM-L3) 50.24 44.01 40.08 32.73 3590 37.73 20.09 3555 4323
Renée + LEVER (NGAME) 56.01 49.43 4485 3355 36.82 3881 21.03 3570 42.78

strategy by comparing Renée + LEVER,. and Renée + LEVER. Renée + LEVER outperforms
Renée + LEVER,. by upto 2% in PSP while being comparable in precision.

Effect of varying 7: The hyperparameter 7 is tuned using a validation set that contains 5% of the
training data. The best value of 7 obtained is then used to train LEVER on complete training data.
Fig. @] shows the effect of varying 7 on LEVER’s performance. It can be seen that increasing 7
leads to better performance on tail labels, while it hurts the head or torso labels.
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Table 12: Comparison of Renée + LEVER 4, and Renée + LEVER on Different Datasets

Dataset Model P@l P@3 P@5 PSP@]1 PSP@3 PSP@5
e AmrTe ik Rt LBV B 008 081 B0 e 0
ek Rt UEVERL 8809 00 St 00 0 s
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Table 13: P and PSP Comparison of NGAME, Renée, and Renée + LEVER on QK-20M Dataset

P@5 PSP@1 PSP@3 PSP@5

P@l P@3
NGAME 69.94 52.72
Renée 72.14 54.87

Renée + LEVER 71.70 54.48

44.81
47.02
46.56

48.24
50.75
54.74

55.63
58.90
63.36

58.71
62.56
67.14

D MODEL DETAILS AND HYPERPARAMETERS

D.1 TAIL EXPERT SIAMESE ENCODER

NGAME’s (Dahiya et al.} 2022)) hyperparameters include:

¢ cluster-sz: Mini-batches in NGAME are created from clusters of similar documents (or
labels). To build a batch of B documents (or labels) we pick B/cluster—sz clusters.

* cluster-freq: Denotes the frequency of refreshing the clusters using updated embeddings.

¢ ~: Denotes the margin enforced while training with contrastive loss.

e 1r: Learning rate for the encoder.

¢ bsz: Denotes the size of mini-batches.

* epochs: Denotes the number of epochs for which the NGAME module is trained.

To train the tail-expert NGAME module we closely follow the settings from (Dahiya et al., [2022).
NGAME utilizes a 6-layer DistilBERT architecture. Table [I4] shows the hyperparameters used on
benchmark as well as newly contributed datasets.

Table 14: Hyperparameters of tail-expert NGAME module.

X indicates use of random mini-

batches.
Dataset cluster-sz cluster-freq v LR bsz Epochs
LF-AmazonTitles-131K 8 5 03 2x10~% 1600 300
LF-Amazon-131K 512 5 03 2x107* 700 400
LF-AOL-270K X X 0.05 2x107% 3200 300
LF-WikiSeeAlso-320K 512 5 03 2x107% 1024 300
LF-Wikipedia-500K 16 5 03 2x107* 512 40
LF-WikiHierarchy-1M 1024 5 03 2x107* 6400 300
LE-AmazonTitles-1.3M 8 5 03 2x107* 1600 400

D.2 ELIAS

ELIAS’s (Gupta et al.,|2022)) hyperparameters include:

* (' Denotes the number of clusters in the index graph.
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a: Multiplicative hyperparameter that controls the effective number of clusters that can get
activated for a given input get activated for a given input.

[: Multiplicative hyperparameter that controls the effective number of labels that can get as-
signed to a particular cluster.

p: Controls the row-wise sparsity of the adjacency matrix.

A: Controls importance of classification loss £, and shortlist loss £ in the final loss.

K: Denotes the shortlist size, label classifiers are only evaluated on top-K shortlisted labels.
b: Denotes the beam size.

epochs: Denotes the total number of epochs (i.e. including stage 1 and stage 2 training).

LRy, LRy : Denotes the learning rate used for the transformer encoder and the rest of the
model.

bsz: denotes the batch-size of the mini-batches used during training

We closely follow the setting used in (Gupta et al., [2022). ELIAS uses a 6-layer Distil-BERT
encoder. Note that the NGAME encoder is only used to augment the ground truth with labels
similar to a particular label, it is not used in any other way while training ELIAS. Table [I3] shows
the hyperparameters used on the benchmark as well as newly contributed datasets.

D.3

Table 15: Hyperparameters of ELIAS

Dataset C a B P A K b Epochs LRy LRw bsz
LF-AmazonTitles-131K 2048 10 150 1000 0.05 2000 20 60 1x107% 2x1072 512
LF-Amazon-131K 2048 10 150 1000 0.05 2000 20 70 7x107° 5x 1073 1024
LF-AOL-270K 4096 10 150 1000 0.05 2000 20 70 3x107°% 1x107% 8192

LF-WikiSeeAlso-320K 4096 10 150 1000 0.05 2000 20 40 5x107° 5x 1072 1024
LF-Wikipedia-500K 8192 10 150 1000 0.05 2000 20 40 5x107° 5x107% 256
LF-WikiHierarchy-IM 16384 10 150 1000 0.05 2000 20 30 5x107°% 5x 1072 1024
LF-AmazonTitles-1.3M 16384 10 150 1000 0.05 2000 20 40 2x107° 1x107% 1024

CASCADEXML

CascadeXML’s (Kharbanda et al.| 2022) hyperparameters include:

Ep: Number of epochs CascadeXML is trained for.

bsz: Denotes the batch size used for training.

label resolution: Denotes the BERT layers and clustering size used at each resolution.
dropout: Dropout used at each resolution.

shortlist size: Cluster size used at each resolution.

LRy, LRy : Denotes the learning rate used for the transformer encoder and weight vectors.

Table 16: Hyperparameters of CascadeXML

LRw

Dataset Ep bsz Label Resolution Dropout Shortlist-sz LRy
LE-AmazonTitles-131K 15 64 {5,6}:2'° — {8}:2'% — {10}:2'® —12: 131073 0.2,0.25,0.35,0.5 210,210 210 q,=4
LE-Amazon-131K 15 64 {56}:2° —{8}:2'2 — {10}:2'° —12: 131073  0.2,0.25,0.4,0.5 26,97, 28 le %
LF-AOL-270K 1296 {56}:210 —{8}:2" — {10}:2'6 —12:272825 0.2,0.25,0.35,0.5 20,210 210 1=

LE-WikiSeeAlso-320K 12 64 {5,6}:2'0 — {8}:2'3 — {10}:2'® —12:312330 02,0.25,0.35,0.5 20,211 212 174
LE-Wikipedia-500K 12256 {5,6}:2'° — {8}:213 — {10}:2'% —12:501070 0.2,0.25,0.35,0.5 210,210 211 1o=%
LE-WikiHierarchy-IM 12 96  {5,6}:2'° — {8}:2'% — {10}:2'® —12: 976214 0.2,0.25,0.35,0.5 20,210 210 1%
LE-AmazonTitles-1.3M 10 48 {7.8}:213 — {10}:216 —12: 1305265 0.2,03,0.4 210 911 le™*

1e™3
1e™3
le™?
1e™3
1e™3

We closely follow the setting used in (Kharbanda et al., [2022). CascadeXML uses a 12-layer BERT
encoder. Note that the NGAME encoder is only used to augment the ground truth with labels similar
to a particular label, it is not used in any other way while training CascaseXML. Table[16]shows the
hyperparameters used on benchmark as well as newly contributed datasets.
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D.4 RENEE
Renée’s (Jain et al.,[2023) hyperparameters include:

* epochs: Denotes the total number of epochs for which Renée is trained.

e dropout: Denotes the probability of randomly dropping the encoder outputs in order to
regularise the network.

* warmup: Warmup steps is the number of training iterations over which both the encoder and
the classifier learning rates are linearly increased from O to the maximum value.

* LRy, LRy : Denotes the learning rate used for the transformer encoder and the classifier layer.
* bsz: Denotes the batch size of the mini-batches used during training.

e clf-wd: Weight decay for fully connected layer parameters.

Table 17: Hyperparameters of Renée

Dataset Epochs Dropout Warmup LRs LRw bsz clf-wd
LF-AmazonTitles-131K 100 0.85 5000 1x107° 5x1072 512 1x107*
LF-Amazon-131K 100 0.85 5000 1x107° 5x1072 512 1x107*
LF-AOL-270K 100 0.60 20000 1x107% 1x107% 1024 1x107*
LE-WikiSeeAlso-320K 100 0.75 5000 2x107* 2x 107! 2048 1x107*
LF-Wikipedia-500K 100 0.70 5000 5x107° 4x107% 2048 1x 107*
LE-WikiHierarchy- 1M 100 0.70 20000 1x107% 2x1072 1024 1x 1072
LF-AmazonTitles-1.3M 100 0.70 15000 1x107% 1x1072 1024 1 x 1074

We closely follow the setting used in (Jain et al., 2023). Renée uses a 6-layer Distil-BERT encoder.
Table|17|shows the hyperparameters used on benchmark as well as newly contributed datasets.

D.5 RERANK + TAUG

ReRank + TAUG (Wei et al.} 2021) hyperparameters include:

* egpiit: Denotes the proportion of labels that will be considered as head labels. The original
dataset D containing L labels is split into 2 datasets D}, and D;. Dj, contains headmost € ;¢ L
labels and their associated training points, while D, contains the remaining L — €,p:¢ L labels
along with their associated training points.

* n-aug: Denotes the number of additional data points that will be generated for each data point
in Dt.

* Ddrop: Denotes the probability of dropping a token from the data point.
* Dswap: Denotes the probability of swapping two randomly chosen tokens.

e rerank—-strategy: Denotes the multiplicative factor used to re-rank scores. We use the
label inverse propensity factor to perform re-ranking.

Table 18: Hyperparameters of Re-rank + TAUG

Dataset €split N—aAUG Pdrop Dswap

LF-AmazonTitles-131K 0.90 8 0.30 0.30
LF-AOL-270K 0.65 6 0.20 0.20
LF-Wikipedia-500K 0.90 4 0.10 0.10
LF-WikiHierarchy-1M  0.90 4 0.20 0.20
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D.6 GANDALF
Gandalf’s (Kharbanda et al.,|2023)) hyperparameters include:

e threshold: Denotes the threshold used to filter out labels obtained from the normalized
label correlation graph during augmentation.

We closely follow the settings used in (Kharbanda et al., 2023)) and use threshold of 0.1 for all
datasets.

D.7 LEVER

LEVER uses the parameter 7 to control the number of entities (data points or labels) are added
for each label. We only add entities having cosine similarity greater than 0.8 with the target label.
The hyper-parameters m, c of Theorem [2| were set to 1,0 as these worked consistently well across
datasets. Table [20] shows the value of 7 for benchmark and newly contributed datasets. Table [I9]
compares the training time of the base OvA classifier with its LEVER regularized counterpart.
LEVER increases the train time to 1.7x times the original OvA classifier in the worst case.

Table 19: Training time (in hours) for different models on a single NVIDIA V100 GPU. In the worst
case, LEVER increases the train time to 1.7x times the original classifier.

Dataset ELIAS| ELIAS |CascadeXML | CascadeXML | Renée | Renée
+ LEVER + LEVER + LEVER

LF-AmazonTitles-131K | 4.33 6.95 3.62 5.25 5.77 8.22

LF-Amazon-131K 19.44 31.11 4.60 6.80 8.33 12.00
LF-AOL-270K 60.66 63.00 42.12 43.80 28.20 30.01
LF-WikiSeeAlso-320K | 25.33 41.33 12.40 18.40 16.56 25.07
LF-Wikipedia-500K 138.60 176.10 29.58 39.00 104.66 133.33
LF-WikiHierarchy-1M | 24.00 40.80 9.85 15.54 12.11 19.77
LF-AmazonTitles-1.3M | 40.00 64.00 70.00 108.70 60.88 92.22

Table 20: LEVER’s Hyperparameter 7 on Different Datasets

Dataset T

LF-AmazonTitles-131K 15
LF-Amazon-131K 20
LF-AOL-270K 100

LF-WikiSeeAlso-320K 4
LF-Wikipedia-5S00K 45
LF-WikiHierarchy-1M 4
LF-AmazonTitles-1.3M 15
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Figure 4: Effect of varying hyperparameter 7 on LEVER’s head and tail performance on LF-
Wikipedia-500K and LF-WikiHierarchy-1M.

25



	Introduction
	Related Work
	Extreme Classification
	Enhancing Tail Performance in XC

	LEVER: Label Variance Reduction in Extreme Classification
	Preliminaries
	LEVER Framework
	A Siamese-Style Teacher for LEVER

	Contributed Datasets
	Experiments and Results
	Conclusions
	Theoretical Proofs
	Dataset details
	Dataset Statistics
	Multi-intent dataset preparation
	LF-AOL-270K
	LF-WikiHierarchy-1M


	Additional results
	LEVER's performance on non-DNN methods
	Comparison with SOTA and Tail XC methods
	Comparison with ensemble between tail Expert and OvA classifier
	comparison with NGAME Encoder
	Effect of Re-ranking on LEVER and other Tail XC approaches
	Ablations

	Model Details and Hyperparameters
	Tail expert Siamese Encoder
	ELIAS
	CascadeXML
	Renée
	ReRank + TAug
	Gandalf
	LEVER


